fb noscript
PHI LOGO

PHI Learning

Helping Teachers to Teach and Students to Learn

Helping Teachers to Teach and Students to Learn

EASTERN ECONMIC EDITION
loading image

 
PHI Learning
INSIGHT INTO DATA MINING: THEORY AND PRACTICE


Learning Resources LOGO

Share on
Share on Twitter Share on Mail Share on LinkedIn Pinterest Share on Other Networks

INSIGHT INTO DATA MINING: THEORY AND PRACTICE

Pages : 420

Print Book ISBN : 9788120328976
Binding : Paperback
Print Book Status : Available
Print Book Price : 750.00  562.5
You Save : (187.5)

eBook ISBN : 9789354430541
Ebook Status : Available
Ebook Price : 750.00  562.5
You Save : (187.5)

Description:


Data Mining is an emerging technology that has made its way into science, engineering, commerce and industry as many existing inference methods are obsolete for dealing with massive datasets that get accumulated in data warehouses.

This comprehensive and up-to-date text aims at providing the reader with sufficient information about data mining methods and algorithms so that they can make use of these methods for solving real-world problems. The authors have taken care to include most of the widely used methods in data mining with simple examples so as to make the text ideal for classroom learning. To make the theory more comprehensible to the students, many illustrations have been used, and this in turn explains how certain parameters of interest change as the algorithm proceeds.

Designed as a textbook for the undergraduate and postgraduate students of computer science, information technology, and master of computer applications, the book can also be used for MBA courses in Data Mining in Business, Business Intelligence, Marketing Research, and Health Care Management. Students of Bioinformatics will also find the text extremely useful.

CD-ROM INCLUDED: The accompanying CD contains

• Large collection of datasets.
• Animation on how to use WEKA and ExcelMiner to do data mining.

Key Features:


• Thorough exposition to classical and modern clustering algorithms with illustrative examples.
• Lucid introduction to support vector machine algorithms with step-by-step implementation details of algorithms.
• Separate chapters on practical datasets and the results of mining, and usage of softwares like WEKA, ExcelMiner and GCLUTO.
• Indepth coverage of data preprocessing with examples.
• Description of all the main classical decision-tree algorithms such as 1D3, C.4.5, CHAID and CART with examples

Review the Book

Book ISBN :
Title :
Author :
Name :
Affiliation :
Contact No.
Email :
Correspondence Address :
Review :
Rate :
Empty StarEmpty StarEmpty StarEmpty StarEmpty Star
×
Enter your membership number.

loading image